Муниципальное общеобразовательное учреждение «Чернутьевская средняя общеобразовательная школа»

PEKON	MEH	лов	AHA.

методическим объединением учителей естественноматематического цикла Протокол от « 22»

<u>ug 50</u> 20<u>23</u> г.

СОГЛАСОВАНА:

зам. директора по УВР Весененевр / Н.Л. Висиневр

23» 03 2023 год

УТВЕРЖДЕНА:

И о директора МОУ «Чернутьевская СОШ»

— Гомове Т. Ц,

Thursa or «13 » Lie pro 20/3 r.

No 01-07 95

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА

ФИЗИКА

(наименование учебного предмета в соответствии с учебным планом)

Среднее общее образование

(уровень образования)

2023-2024

(срок реализации программы)

Тюрнина Анна Валерьевна, учитель физики МОУ «Чернутьевская СОШ» кем (Ф.И.О., должность педагогического работника, составившего рабочую учебную программу)

с. Чернутьево 2023 г.

I. Пояснительная записка

Программа по физике для 10-11 классов составлена в соответствии с: Федеральным законом об образовании в Российской Федерации (от 29.12.2012 N 273-ФЗ (ред. от 29.07.2017)), требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО); примерной программы учебного курса (Шаталина А.В., Рабочие программы, Физика, 10-11 классы. – М.: Просвещение, 2017.), комплекта учебников Г.Я.Мякишев, Б.Б.Буховцев, В.М.Чаругин / Под ред. Н.А.Парфентьевой, Физика. 10 класс. Базовый уровень и углубленный уровни – М.: Просвещение, 2021.), Г.Я.Мякишев, Б.Б.Буховцев, В.М.Чаругин / Под ред. Н.А.Парфентьевой, Физика. 11 класс. Базовый уровень и углубленный уровни – М.: Просвещение, 2021.).

На изучение учебного предмета отводится

10 класс – по 2 часа в неделю, 68 часов в год

11 класс – по два часа в неделю, 68 часов в год

Изучение физики в 10-11 классах направлено на достижение следующих целей:

- освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественнонаучной информации;
- воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни.

Достижение этих целей обеспечивается решением следующих задач:

- формирования основ научного мировоззрения;
- развития интеллектуальных способностей учащихся;
- развитие познавательных интересов школьников в процессе изучения физики;
- знакомство с методами научного познания окружающего мира;
- постановка проблем, требующих от учащихся самостоятельной деятельности по их разрешению;
- вооружение школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

II. Планируемые результаты

Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел, имеющих закрепленную ось вращения, колебательное движение, резонанс, волновое движение (звук);
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);

• находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
 - различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
 - приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические и магнитные явления

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
 - использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
 - приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы расчета электрического сопротивления припоследовательномипараллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
 - понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
 - различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;

• различать гипотезы о происхождении Солнечной системы. В результате у выпускников будут сформированы личностные, регулятивные, познавательные и коммуникативные учиверсальные учебные действия.

№	Формируемые УУД	10 класс	11 класс	
1	Личностные УУД	 мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научнотехническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; 	способ реализации собственных жизненных планов; — готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных,	
2	Метапредметные УУД	 ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели; сопоставлять полученный результат деятельности с поставленной заранее целью. 		
3	Познавательные УУД	 искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи; критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках; выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения; менять и удерживать разные позиции в познавательной деятельности. 		
4	Коммуникативные УУД	развернуто, логично и точно излагать свою письменных) языковых средств;	точку зрения с использованием адекватных (устных и	

III. Содержание

10 класс:

Введение. Физика и физические методы изучения природы

Физика — наука о природе. Физические тела и явления. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы. Физические величины и их измерение. Точность и погрешность измерений. Международная система единиц. Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественнонаучной грамотности.

Механические явления

Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Система отсчета. Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности. Первый закон Ньютона и инерция. Масса тела. Плотность вещества. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Динамометр. Равнодействующая сила. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике.

Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы.

Основы молекулярно-кинетической теории

Строение вещества. Атомы и молекулы. Тепловое движение атомов и молекул. Взаимодействие (притяжение и отталкивание) молекул. Тепловое равновесие. Температура. Связь температуры со скоростью хаотического движения частиц. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Количество теплоты. Закон сохранения и превращения энергии в тепловых процессах. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Влажность воздуха.

Основы термодинамики

Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины.

Основы электродинамики

Электрическое поле как особый вид материи. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления. Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное соединение проводников. Параллельное соединение проводников. Работа электрического поля по перемещению

электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля - Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание. Ток в различных средах.

11 класс:

Основы электродинамики (продолжение).

Магнитное поле

Взаимодействие токов. Магнитное поле тока. Магнитная индукция. Сила Ампера. Сила Лоренца.

Электромагнитная индукция

Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. Индуктивность. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

Электромагнитные колебания и волны

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Переменный электрический ток. Генерирование электрической энергии. Трансформатор. Передача электрической энергии. Электромагнитные волны. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

Оптика

Световые волны.

Скорость света и методы ее измерения. Законы отражения и преломления света. Волновые свойства света: дисперсия, интерференция света, дифракция света. Когерентность. Поперечность световых волн. Поляризация света.

Элементы теории относительности

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

Излучения и спектры

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.

Квантовая физика

Гипотеза Планка о квантах. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

Модели строения атомного ядра: протонно-нейтронная модель строения атомного ядра. Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия

Строение Вселенной

Строение солнечной системы. Система «Земля – Луна». Общие сведения о Солнце (вид в телескоп, вращение, размеры, масса, светимость, температура солнца и состояние вещества в нем, химический состав). Источники энергии и внутреннее строение Солнца. Физическая природа звезд. Наша Галактика (состав, строение, движение звезд в Галактике и ее вращение). Происхождение и эволюция галактик и звезд.

Повторение.

.

Модуль воспитательной программы «Школьный урок»

- -установление доверительных отношений между педагогическим работником и его обучающимися, способствующих позитивному восприятию обучающимися требований и просьб педагогического работника, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности;
- -побуждение обучающихся соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (педагогическими работниками) и сверстниками (обучающимися), принципы учебной дисциплины и самоорганизации;
- -привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения;
- использование воспитательных возможностей содержания учебного предмета через демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;
- применение на уроке интерактивных форм работы с обучающимися: интеллектуальных игр, стимулирующих познавательную мотивацию обучающихся; дискуссий, которые дают обучающимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися;
- включение в урок игровых процедур, которые помогают поддержать мотивацию обучающихся к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;
- организация шефства мотивированных и эрудированных обучающихся над их неуспевающими одноклассниками, дающего обучающимся социально значимый опыт сотрудничества и взаимной помощи;
- -инициирование и поддержка исследовательской деятельности обучающихся в рамках реализации ими индивидуальных и групповых исследовательских проектов, что даст обучающимся возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения

IV. Тематическое планирование

10 класс:

Nº	Раздел	Количество часов	Контрольная работа	Лабораторные работы
1.	Введение. Физика и физические методы изучения природы	1		
2.	Механика	25	2	1
3.	Основы молекулярно-кинетической теории. Взаимные превращения жидкостей и газов	10	1	1
4.	Основы термодинамики	8	1	
5.	Основы электродинамики	24	2	2
Итог	о 68 часов			

11 класс:

№	Раздел	Количество часов	Контрольная работа	Лабораторные работы
1.	Магнитное поле	5		1
2.	Электромагнитная индукция	6	1	1
3.	Электромагнитные колебания и волны	11	0	0
4.	Оптика. Световые волны	14	1	2
5.	Элементы теории относительности	2	0	0
6.	Излучение и спектры	3	0	0
7.	Квантовая физика	12	1	0
8.	Строение Вселенной	3	0	0
9.	Повторение	12	1	0
Итог	о 68 часов			

Лабораторные и практические работы проводятся с помощью оборудования ТОЧКИ РОСТА

V. Календарно-тематическое планирование 10 класс Введение (1 час)

№	Тема	Количество часов
	Введение. Физика и физические методы изучения природы (1 час)	
1	Физика и познание мира.	1.
	Механика (25 часа)	
	Кинематика (9 часов)	
2	Механическое движении. Система отсчета.	1
3	Равномерное движение тел. Скорость. Уравнение равномерного движения. Решение задач.	1
4	Графики прямолинейного равномерного движения. Решение задач.	1
5	Скорость при неравномерном движении. Мгновенная скорость. Сложение скоростей.	1
6	Прямолинейное равноускоренное движение.	1
7	Равномерное движение точки по окружности.	1
8	Кинематика абсолютно твердого тела	1
9	Решение задач по теме «Кинематика».	1
10	Контрольная работа №1 «Кинематика».	1
	Динамика (8 часов)	
11	Основное утверждение механики. Сила. Масса. Единица массы.	1
12	Первый закон Ньютона.	
13	Второй закон Ньютона. Третий закон Ньютона.	1
14	Принцип относительности Галилея.	1
15	Сила тяжести и сила всемирного тяготения.	1
16	Вес. Невесомость.	1
17	Деформации и силы упругости. Закон Гука.	1
18	Силы трения.	1
	Законы сохранения в механике (8 часов)	
19	Импульс. Закон сохранения импульса.	1
20	Решение задач на закон сохранения импульса.	1
21	Механическая работа и мощность силы.	1

22	Кинетическая энергия	1	
23	Работа силы тяжести и упругости.	1	
24	Потенциальная энергия. Закон сохранения энергии в механике.		
25	Лабораторная работа №2. «Изучение закона сохранения механической энергии».	1	
26	Контрольная работа №2. «Динамика. Законы сохранения в механике»		
	Основы молекулярно-кинетической теории (8 часов)		
27	Основные положения МКТ.	1	
28	Броуновское движение. Силы взаимодействия молекул.	1	
29	Основное уравнение МКТ	1	
30	Температура. Энергия теплового движения молекул.	1	
31	Уравнение состояния идеального газа	1	
32	Газовые законы	1	
33	Лабораторная работа №3 «Экспериментальная проверка закона Гей-Люссака»	1	
34	Контрольная работа №3 «Основы МКТ»	1	
	Взаимные превращения жидкостей и газов (2часа)		
35	Насыщенный пар. Давление насыщенного пара.	1	
36	Влажность воздуха	1	
	Основы термодинамики (8 часов)		
37	Внутренняя энергия.	1	
38	Работа в термодинамике.	1	
39	Количество теплоты. Уравнение теплового баланса.	1	
40	Решение задач на уравнение теплового баланса	1	
41	Первый закон термодинамики. Второй закон термодинамики	1	
42	Принцип действия и КПД тепловых двигателей.	1	
43	Решение задач по теме «Основы термодинамики»	1	
44	Контрольная работа № 4 на тему «Основы термодинамики»	1	
	Основы электродинамики (24 часа)		
	Электростатика (10 часов)		
45	Заряд. Закон сохранения заряда.	1	
46	Закон Кулона.	1	
47	Электрическое поле. Напряженность	1	
48	Поле точечного заряда, сферы. Принцип суперпозиции. Потенциальная энергия заряженного тела в ЭП	1	

49	Потенциал. Разность потенциалов.	1
50	Связь между напряженностью и разностью потенциалов. Эквипотенциальные поверхности	1
51	Решение задач по теме «Потенциальная энергия. Разность потенциалов»	1
52	Электроемкость. Конденсатор.	1
53	Энергия заряженного конденсатора	1
	Законы постоянного тока (8 часов)	
54	Электрический ток. Сила тока	1
55	Закон Ома для участка цепи. Сопротивление	1
56	Электрические цепи. Последовательное и параллельное соединение проводников. Лабораторная работа №3.	1
	«Изучение последовательного и параллельного соединения».	
57	Решение задач на закон Ома и соединение проводников.	1
58	Работа и мощность постоянного тока.	1
59	ЭДС. Закон Ома для полной цепи.	1
60	Лабораторная работа №4. «Измерение ЭДС и внутреннего сопротивления источника тока».	1
61	Контрольная работа № 5. «Законы постоянного тока».	1
	Электрический ток в различных средах (8часов)	
62	Электрическая проводимость различных веществ. Проводимость металлов.	1
63	Зависимость сопротивления проводника от температуры. Ток в полупроводниках.	1
64	Электрический ток в вакууме. Электронно-лучевая трубка.	1
65	Электрический ток в жидкостях. Закон электролиза.	1
66	Электрический ток в газах. Несамостоятельный и самостоятельный разряды.	1
67	Повторение курса физики 10 класса	1
68	Промежуточная аттестация	1

Календарно-тематическое планирование 11 класс.

N_{2}	Тема	Количест
		во часов
	« Магнитное поле» (5 часов)	
1.	Взаимодействие токов. Лабораторная работа №1. «Наблюдение действия магнитного поля на ток».	1
2.	Вектор магнитной индукции. Линии магнитной индукции	1
3.	Сила Ампера	1
4.	Сила Лоренца	1
5.	Решение задач по теме «Магнитное поле».	1
	«Электромагнитная индукция» (6 часов)	
6.	Явление электромагнитной индукции. Магнитный поток.	1
	Закон электромагнитной индукции.	
7.	Направление индукционного тока. Правило Ленца.	1
8.	Самоиндукция. Индуктивность.	1
9.	Лабораторная работа №2. «Изучение явления электромагнитной индукции».	1
10.	Энергия магнитного поля тока. Электромагнитное поле.	1
11.	Контрольная работа №1. «Магнитное поле. Электромагнитная индукция».	1
	«Электромагнитные колебания» (9 часов)	
12.	Свободные и вынужденные электромагнитные колебания.	1
13.	Колебательный контур. Превращение энергии при электромагнитных колебаниях.	1
14.	Переменный электрический ток.	1
15.	Активное сопротивление. Действующее значение силы тока и напряжения	1
16.	Конденсатор в цепи переменного тока.	1
17.	Катушка индуктивности в цепи переменного тока	1
18	Производство, передача и использование электрической энергии	1
19	Решение задач по теме «Электромагнитные колебания»	1
20	Проверочная работа по теме «Электромагнитные колебания»	1

	«Электромагнитные волны» (2 часа)	
21	Экспериментальное обнаружение электромагнитных волн.	1
22	Принципы радиосвязи. Понятие о телевидении. Развитие средств связи	1
	«Оптика. Световые волны» (14 часов)	
23	Скорость света. Принцип Гюйгенс. Закон отражения света.	1
24	Закон преломления света. Полное отражение	1
25	Решение задач на законы отражения и преломления света.	1
26	Лабораторная работа №3 «Измерение показателя преломления стекла»	1
27	Линзы. Построение изображения в линзах.	1
28	Формула тонкой линзы. Увеличение линзы	1
29	Решение задач по теме «Геометрическая оптика»	1
30	Дисперсия света	1
31	Интерференция света	1
32	Дифракция света. Дифракционная решетка	1
33	Лабораторная работа №4 «Измерение длины световой волны»	1
34	Решение задач по теме «Волновая оптика»	1
35	Решение задач по теме «Волновая оптика»	1
36	Контрольная работа № 2 «Оптика»	1
	«Элементы терии относительности» (2 часа)	
37	Законы электродинамики и принцип относительности. Постулаты теории относительности.	1
38	Элементы релятивистской механики.	1
	«Излучение и спектры» (3 часа)	
39	Виды излучений. Источники света.	1
40	Виды спектров. Спектральный анализ.	1
41	Лабораторная работа №4 «Наблюдение сплошного и линейчатого спектра»	1
	Квантовая физика (12 часов)	
42	Фотоэффект. Теория фотоэффекта.	1
43	Решение задач по теме «Фотоэффект»	1
44	Решение задач по теме «Фотоэффект»	1
45	Строение атома. Опыты Резерфорда.	1

46	Постулаты Бора.	1
47	Решение задач по теме «Атомная физика»	1
48	Открытие радиоактивности. Виды излучений. Радиоактивные превращения.	1
49	Закон радиоактивного распада. Период полураспада	1
50	Строение ядра. Ядерные силы. Энергия связи в ядре.	1
51	Ядерные реакции. Деление урана. Цепные реакции.	1
52	Контрольная работа №3 «Квантовая физика. Фотоэффект»	1
53	Физика элементарных частиц	1
	«Астрономия» (3 часа)	
54	Солнечная система. Законы движения планет	1
55	Солнце и звезды	1
56	Строение Вселенной	1
	Раздел «Обобщающее повторение» (12 часов)	
57	Кинематика материальной точки.	1
58	Динамика материальной точки.	1
59	Законы сохранения	1
60	Динамика периодического движения	1
61	Статика	1
62	Молекулярно-кинетическая теория идеального газа.	1
63	Термодинамика	1
64	Механические и звуковые волны. Задачи в тетради	1
65	Силы электромагнитного взаимодействия неподвижных зарядов.	1
66	Энергия электромагнитного взаимодействия неподвижных зарядов.	1
67	Обобщающее повторение	1
68	Промежуточная аттестация	1

КРИТЕРИИ И НОРМЫ ОЦЕНКИ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОБУЧАЮЩИХСЯ

Оценка устных ответов учащихся

Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двухтрех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка письменных контрольных работ

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

Оценка лабораторных работ

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

Перечень ошибок

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики и принципиальные схемы.
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показания измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.
- 4. Нерациональный выбор хода решения.

Недочеты

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков.
- 5. Орфографические и пунктуационные ошибки.

Цифровые образовательные ресурсы в сети ИНТЕРНЕТ по ФИЗИКЕ

- 1. Образовательный комплекс ФИЗИКА, 10–11 класс. ПОДГОТОВКА К ЕГЭ. (Система программ "1С: Образование 3.0"). СD. 2004г.
- 2. Образовательный комплекс ФИЗИКА, 7–11 класс. Библиотека наглядных пособий. (Система программ "1С: Образование 2.0") . СD. 2004г.
- 3. Новая школа. Физика. Подготовка к ЕГЭ.
- 4. Физикон. Библиотека наглядных пособий. Физика 7-11 кл. С. С. 2004г
- 5.Физикон. Открытая астрономия 2.6. CD.2005г
- 6.Единая коллекция цифровых образовательных ресурсов. http://school-collection.edu.ru/
- 7. Каталог образовательных ресурсов сети Интернет. http://katalog.iot.ru/
- 8. Российский общеобразовательный портал. http://www.school.edu.ru/
- 9. Единый каталог образовательных Интернет-ресурсов. http://window.edu.ru/, http://shkola.edu.ru/. http://www.km-school.ru/.

№ п/п	Название сайта или статьи	Содержание	Электронный адрес
1.	Федеральные тесты по механике	Тесты по кинематике, динамике и статике, каждый из которых состоит из 40 вопросов. Предусмотрены три режима работы с тестами: ознакомление, самоконтроль и обучение	http://rostest.runnet.ru/cgi- bin/topic.cgi?topic=Physics
2.	Активная физика: программное обеспечение для поддержки изучения	Методические рекомендации по формированию основных понятий, умений и навыков решения задач. Более 6 000 вариантов заданий-ситуаций, которые можно использовать на уроке в виде небольших компьютерных фрагментов.	http://www.cacedu.unibel.by/partner/bspu

	школьного курса физики	Демоверсии	
3.	Газета «1 сентября»: материалы по физике	Подборка публикаций по преподаванию физики в школе. Архив с 1997 года	http://archive.1september.ru/fiz
5.	Каталог ссылок на ресурсы по физике	Лекции: теоретические положения, задачи и примеры. Демонстрация опытов	http://www.kg.ru/
6.	Кабинет физики	Энциклопедии, библиотеки, методики проведения уроков, тестирование, СМИ, учебные планы, вузы, научные организации, конференции и др.	http://www.ivanovo.ac.ru/phys
7.	Бесплатные обучающие программы по физике	Стандарт физического образования в средней школе. Обзор школьных программ и учебников. Материалы по методике преподавания. Экзаменационные вопросы, конспекты, тесты для учащихся. Новости науки	http://www.edu.delfa.net/
8.	Лабораторные работы по физике	15 обучающих программ по различным разделам физики	http://www.history.ru/freeph.htm
9.	Анимации физических процессов	Виртуальные лабораторные работы для 10-х и 11-х классов по газовым законам, электричеству, электромагнитной индукции и оптике. Виртуальные демонстрации экспериментов	http://phdep.ifmo.ru/
11.	Анимации физических процессов: механика	Трехмерные анимации и визуализации по физике, сопровождаются теоретическими объяснениями	http://physics.nad.ru/
12.	Курс физики 11-го класса	Анимации по углубленному курсу механики	http://physics.nad.ru/Physics/Cyrill ic/mech.htm
13.	Курс физики 10-го класса	Традиционный курс физики 11-го класса (6 тем)	http://vschool.km.ru/
14.	Электролитическая диссоциация	Интерактивный курс и справочник (8 тем)	http://vschool.km.ru/
15.	Уроки физики с	Комплект опорных схем-конспектов по темам:	http://dissociation.nm.ru/

	использованием	электролитическая диссоциация; кислоты, основания,	
	Интернета	амфотерные гидроксиды, соли как электролиты; реакции ионного обмена	
16	Физика: зачем и какая?	Учебники физики для 7, 8 и 9-х классов, сборники вопросов и задач, тесты, описания лабораторных работ. Учителя найдут обзоры учебной литературы, тематические и поурочные планы, методические разработки	http://www.fizika.ru/
17	Физическая энциклопедия	Материалы для изучения физики: задачи, тесты, демонстрационные программы, справочники, игры	http://physicomp.lipetsk.ru/
18	Физика и биология	Курьезы, веселые истории, происшедшие с российскими физиками	http://www.1september.ru/ru/fiz/20 02/02/no02 1.htm
19	Уроки по молекулярной физике	Материалы по физике и методике преподавания физики для учителей и учащихся. Программы Г. Н. Степановой. Информация об использовании компьютера на уроке физики. Хрестоматия по физике. Конспекты по механике. Тесты и задачи. Стандарт физического образования	http://www.edu.delfa.net/
20	Задачи по физике: задачник «Кванта»	Семь уроков по молекулярной физике для учащихся 10-х классов. Теория, задачи, список литературы, список вебресурсов по физике и ссылки на сайты дистанционного образования. Задачи повышенной трудности	http://marklv.narod.ru/mkt
21	Теория машины времени и сверхбыстрый межзвездный корабль	Архив задач по физике, опубликованных в журнале «Квант» с 1970 по 1999 год, с решениями	http://kvant.mccme.ru/rub/7B.htm
22	Ядерная физика	Теория времени на основе математического анализа	http://www.univer.omsk.su/omsk/S ci/Time/timek.htm
23	Физические задачи Капицы	Общие сведения о физике ядра и частиц. Физика гиперядер. Таблицы элементарных частиц. Лауреаты Нобелевской	http://nuclphys.sinp.msu.ru/

		премии по физике. Ссылки на ресурсы по ядерной физике. Задачи и вопросы для студентов	
24	Современная физика в задачах	Знаменитые задачи П. Л. Капицы по всем разделам физики, которые он придумал для первокурсников Московского физико-технического института	http://www.nsu.ru/materials/ssl/tex t/metodics/kapica.html
25	Дистанционный консультационный пункт для учителей и школьников	Задачи повышенной трудности и «интересности», базирующиеся на реальных проблемах физики. Задачи предваряются теорией, даются их подробные решения	http://www.nsu.ru/materials/ssl/tex t/metodics/ivanov.html
26	Открытый колледж: физика	Дистанционные консультации по физике. Новости науки. Тесты и задачи. Работы школьников	http://www.nsu.ru/materials/ssl/dis tance/about.html
27	Механика - эксперименты, задачи	Содержание учебных компьютерных курсов компании ФИЗИКОН и индивидуальное обучение через Интернет — тестирование и электронные консультации. Раздел «Физика в Интернет» содержит обзор интернет-ресурсов по физике и постоянно обновляется	http://www.college.ru/physics/inde x.php